پیش‌نویس:جدول معمولی استاندارد

از testwiki
پرش به ناوبری پرش به جستجو

در آمار ،جدول نرمال واحد که به عنوان جدول Z نیز شناخته می شود، یک جدول ریاضی است که مقادیر تابع توزیع تجمعی یا توزیع نرمال را نشان می دهد. احتمال اینکه یک آمار در زیر، بالاتر یا بین مقادیر توزیع نرمال استاندارد و در نتیجه بر روی هر توزیع نرمال یافت شود، محاسبه می شود. به دلیل عدم امکان چاپ جداول احتمال برای همه توزیع های نرمال، اغلب لازم است که یک نرمال را به یک نرمال استاندارد (همچنین به عنوان z-score شناخته می شود) تبدیل کرده و سپس از جدول نرمال استاندارد برای یافتن احتمالات استفاده کنید.[2]

توزیع نرمال نرمال و استاندارد

توزیع‌های نرمال، توزیع‌های متقارن و زنگوله ای شکل هستند که در توصیف داده‌های دنیای واقعی کاربرد دارند. توزیع نرمال استاندارد که با الگو:Mvar نمایش داده می شود، توزیع نرمال با میانگین 0 و انحراف استاندارد 1 است.

تبدیل

  اگر یک متغیر تصادفی به اسم الگو:Mvar از توزیع نرمال که میانگین آن الگو:Mvar و انحراف استاندارد آن الگو:Mvar باشد، امتیاز Z آن را می‌توان با کم کردن الگو:Mvar(میانگین) از الگو:Mvar و تقسیم بر الگو:Mvar (انحراف معیار) محاسبه کرد:

Z=Xμσ

اگر X مجموع نمونه ای با اندازه الگو:Mvar ازیک جمعیت است که در آن میانگین الگو:Mvar و انحراف معیار الگو:Mvar است، جمع کل مورد انتظار الگو:Mvar و خطای استانداردآن برابر با. الگو:Tmath

Z=Xμσ/n

اگر X نشان دهنده میانگین نمونه ای با اندازه n باشد که از جمعیتی با میانگین μ و انحراف معیار σ گرفته شده است، خطای استاندارد برابر است با الگو:Tmath

Z=Xnμσn

خواندن جدول Z

قالب بندی / طرح بندی

جداول Z معمولاً به صورت زیر تشکیل می شوند:

  • سطرها شامل قسمت صحیح و اولین رقم اعشار الگو:Mvar هستند.
  • ستون ها حاوی دومین رقم اعشار الگو:Mvar هستند.
  • مقادیر درون جدول، احتمالات مربوط به نوع جدول هستند. این احتمالات محاسبات مساحت زیر منحنی نرمال از نقطه شروع (0 برای تجمعی از میانگین ، بی نهایت منفی برای تجمعی و بی نهایت مثبت برای تجمعی مکمل ) تا الگو:Mvar هستند.

به عنوان مثال: برای یافتن 0.69 ، باید به سطرها نگاه می کنیم تا 0.6 را پیدا کنیم و سپس در ستون ها به دنبال0.09 بگردیم که احتمال آن در جدول میانگین برابر 0.25490 و یا در جدول تجمعی برابر 0.75490 به دست می آید. هم چنین می توان با کم کردن هر کدام از یک دیگری را نیز به دست آورد.

برای تعیین یک مقدار منفی مانند -0.83، ممکن است به یک جدول تجمعی برای مقادیر z منفی که با احتمال 0.20327 مطابقت دارد مراجعه کنید.

اما از آنجایی که منحنی توزیع نرمال دارای متقارن است، احتمالات معمولافقط برای Z های مثبت داده میشوند .استفاده کننده ممکن است مجبور باشد از یک عملیات مکمل بر روی قدر مطلق الگو:Mvar استفاده کند، مانند مثال زیر.

انواع جدول

جداول Z حداقل از سه قرارداد مختلف استفاده می کنند:

تجمعی از میانگین
احتمال می دهد که یک آمار بین 0 (میانگین) و الگو:Mvar باشد. مثال: الگو:ریاضی .
تجمعی
احتمال کمتر بودن یک آمار از الگو:Mvar را می دهد. این معادل مساحت زیر تابع توزیع نرمال از ∞-تا الگو:Mvar است. مثال: الگو:ریاضی .
تجمعی مکمل
احتمالی را می دهد که یک آمار بزرگتر از الگو:Mvar باشد. این معادل مساحت زیر تابع توزیع نرمال از الگو:Mvar تا ∞+است.
مثال: الگو:ریاضی را پیدا کنید. از آنجایی که مساحت کل زیر تابع توزیع نرمال برابر را یک است با کم کردن احتمال تجمعی از 1 مقدار احتمال تجمعی مکمل را می توان محاسبه کرد. یعنی الگو:ریاضی یا الگو:ریاضی .

نمونه های جدول

تجمعی از منهای بی نهایت تا Z

مقادیر مربوط به ناحیه سایه دار برای الگو:Mvar داده شده است

این جدول احتمالی را نشان می دهد که یک آمار بین منهای بی نهایت و الگو:Mvar باشد.که همان قسمت زرد رنگ عکس بالا است .

f(z)=Φ(z)

مقادیر با استفاده از انتگرال تابع توزیع تجمعی یک توزیع نرمال استاندارد با میانگین صفر و انحراف استاندارد یک محاسبه می‌شوند. این تابع معمولا با حرف بزرگ یونانی Φ (فی)نشان داده می شود.

Φ(z)=12πzet2/2dt

Φ (z) مربوط به تابع خطا یا الگو:ریاضی است.

Φ(z)=12[1+erf(z2)]

توجه داشته باشید که برای الگو:ریاضی ، مساحت زیر نمودار برای بازه الگو:ریاضی ) نتایج به ترتیب برابر است با الگو:ریاضی ، قانون68-95- 99.7

تجمعی (کمتر از Z)

این جدول احتمال کوچکتر بودن یک آماره از Z را ارائه می دهد، به این معنی که در محدوده بی نهایت منفی و Z قرار می گیرد.

z −0.00 −0.01 −0.02 −0.03 −0.04 −0.05 −0.06 −0.07 −0.08 −0.09
-4.0 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002
-3.9 0.00005 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003 0.00003
-3.8 0.00007 0.00007 0.00007 0.00006 0.00006 0.00006 0.00006 0.00005 0.00005 0.00005
-3.7 0.00011 0.00010 0.00010 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008
-3.6 0.00016 0.00015 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011
-3.5 0.00023 0.00022 0.00022 0.00021 0.00020 0.00019 0.00019 0.00018 0.00017 0.00017
−3.4 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024
−3.3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035
−3.2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050
−3.1 0.00097 0.00094 0.00090 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071
−3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.00100
−2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139
−2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193
−2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264
−2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357
−2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480
−2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639
−2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842
−2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101
−2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426
−2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831
−1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330
−1.8 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938
−1.7 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673
−1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551
−1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592
−1.4 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811
−1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08692 0.08534 0.08379 0.08226
−1.2 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09853
−1.1 0.13567 0.13350 0.13136 0.12924 0.12714 0.12507 0.12302 0.12100 0.11900 0.11702
−1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786
−0.9 0.18406 0.18141 0.17879 0.17619 0.17361 0.17106 0.16853 0.16602 0.16354 0.16109
−0.8 0.21186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673
−0.7 0.24196 0.23885 0.23576 0.23270 0.22965 0.22663 0.22363 0.22065 0.21770 0.21476
−0.6 0.27425 0.27093 0.26763 0.26435 0.26109 0.25785 0.25463 0.25143 0.24825 0.24510
−0.5 0.30854 0.30503 0.30153 0.29806 0.29460 0.29116 0.28774 0.28434 0.28096 0.27760
−0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 0.32276 0.31918 0.31561 0.31207
−0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.35942 0.35569 0.35197 0.34827
−0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.39743 0.39358 0.38974 0.38591
−0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.43644 0.43251 0.42858 0.42465
−0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.47608 0.47210 0.46812 0.46414
z −0.00 −0.01 −0.02 −0.03 −0.04 −0.05 −0.06 −0.07 −0.08 −0.09
z + 0.00 + 0.01 + 0.02 + 0.03 + 0.04 + 0.05 + 0.06 + 0.07 + 0.08 + 0.09
0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56360 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774
1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158
2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361
2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861
3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900
3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929
3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950
3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965
3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976
3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983
3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989
3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992
3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995
3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997
4.0 0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99998 0.99998 0.99998 0.99998
z +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09

تجمعی مکمل

این جدول احتمال بزرگتر بودن آماره از Z را نشان می دهد.

f(z)=1Φ(z)

z +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09
0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.47608 0.47210 0.46812 0.46414
0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.43640 0.43251 0.42858 0.42465
0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.39743 0.39358 0.38974 0.38591
0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.35942 0.35569 0.35197 0.34827
0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 0.32276 0.31918 0.31561 0.31207
0.5 0.30854 0.30503 0.30153 0.29806 0.29460 0.29116 0.28774 0.28434 0.28096 0.27760
0.6 0.27425 0.27093 0.26763 0.26435 0.26109 0.25785 0.25463 0.25143 0.24825 0.24510
0.7 0.24196 0.23885 0.23576 0.23270 0.22965 0.22663 0.22363 0.22065 0.21770 0.21476
0.8 0.21186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673
0.9 0.18406 0.18141 0.17879 0.17619 0.17361 0.17106 0.16853 0.16602 0.16354 0.16109
1.0 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786
1.1 0.13567 0.13350 0.13136 0.12924 0.12714 0.12507 0.12302 0.12100 0.11900 0.11702
1.2 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09853
1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08692 0.08534 0.08379 0.08226
1.4 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811
1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592
1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551
1.7 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673
1.8 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938
1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330
2.0 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831
2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426
2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101
2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842
2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639
2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480
2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357
2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264
2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193
2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139
3.0 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.00100
3.1 0.00097 0.00094 0.00090 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071
3.2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050
3.3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035
3.4 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024
3.5 0.00023 0.00022 0.00022 0.00021 0.00020 0.00019 0.00019 0.00018 0.00017 0.00017
3.6 0.00016 0.00015 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011
3.7 0.00011 0.00010 0.00010 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008
3.8 0.00007 0.00007 0.00007 0.00006 0.00006 0.00006 0.00006 0.00005 0.00005 0.00005
3.9 0.00005 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003 0.00003
4.0 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002

[۱]

این جدول احتمال بزرگتر بودن یک آمار از Z را برای Z های بزرگ صحیح نشان می دهد.

z +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
0 5.00000 E −1 1.58655 E −1 2.27501 E −2 1.34990 E −3 3.16712 E −5 2.86652 E −7 9.86588 E −10 1.27981 E −12 6.22096 E −16 1.12859 E −19
10 7.61985 E −24 1.91066 E −28 1.77648 E −33 6.11716 E −39 7.79354 E −45 3.67097 E −51 6.38875 E −58 4.10600 E −65 9.74095 E −73 8.52722 E −81
20 2.75362 E -89 3.27928 E -98 1.43989 E -107 2.33064 E -117 1.39039 E -127 3.05670 E -138 2.47606 E -149 7.38948 E -161 8.12387 E -173 3.28979 E -185
30 4.90671 E -198 2.69525 E -211 5.45208 E -225 4.06119 E -239 1.11390 E -253 1.12491 E -268 4.18262 E -284 5.72557 E -300 2.88543 E -316 5.35312 E -333
40 3.65589 E -350 9.19086 E -368 8.50515 E -386 2.89707 E -404 3.63224 E -423 1.67618 E -442 2.84699 E -462 1.77976 E -482 4.09484 E -503 3.46743 E -524
50 1.08060 E -545 1.23937 E -567 5.23127 E -590 8.12606 E -613 4.64529 E -636 9.77237 E -660 7.56547 E -684 2.15534 E -708 2.25962 E -733 8.71741 E -759
60 1.23757 E -784 6.46517 E -811 1.24283 E -837 8.79146 E -865 2.28836 E -892 2.19180 E -920 7.72476 E -949 1.00178 E -977 4.78041 E -1007 8.39374 E -1037
70 5.42304 E -1067 1.28921 E -1097 1.12771 E -1128 3.62960 E -1160 4.29841 E -1192 1.87302 E -1224 3.00302 E -1257 1.77155 E -1290 3.84530 E -1324 3.07102 E -1358

نمونه هایی از استفاده

نمرات امتحان یک استاد تقریباً دارای میانگین 80 و انحراف معیار 5 است. برای این توزیع فقط یک انباشته از جدول میانگین موجود است.

  • احتمال اینکه یک دانش آموز نمره 82 یا کمتر بگیرد چقدر است؟ P(X82)=P(Z82805)=P(Z0.40)=0.15542+0.5=0.65542
  • احتمال اینکه یک دانش آموز نمره 90 یا بیشتر بگیرد چقدر است؟ P(X90)=P(Z90805)=P(Z2.00)=1P(Z2.00)=1(0.47725+0.5)=0.02275
  • احتمال اینکه یک دانش آموز نمره 74 یا کمتر بگیرد چقدر است؟ P(X74)=P(Z74805)=P(Z1.20) از آنجای که جدول شامل اعداد صحیح منفی نمی شود به دست آوردن احتمال شامل یک قدم اضافه تر است : =P(Z1.20)=1(0.38493+0.5)=0.11507
  • احتمال اینکه دانش آموز بین 74 تا 82 نمره بگیرد چقدر است؟ P(74X82)=P(X82)P(X74)=0.655420.11507=0.54035
  • احتمال اینکه میانگین سه نمره 82 یا کمتر باشد چقدر است؟ P(X82)=P(Z82805/3)=P(Z0.69)=0.2549+0.5=0.7549

همچنین ببینید

الگو:درگاه

منابع

  1. ^"Z Table. History of Z Table. Z Score". Retrieved 21 December 2018.
  2. ^ Larson, Ron; Farber, Elizabeth (2004). Elementary Statistics: Picturing the World. 清华大学出版社. p. 214. ISBN 7-302-09723-2.
  3. ^ "How to use a Z Table". ztable.io. Retrieved 9 January 2023.
  4. ^ 0.5 + each value in Cumulative from mean table
  5. ^ 0.5 − each value in Cumulative from mean (0 to Z) table

الگو:پانویس

  1. 0.5 − each value in Cumulative from mean (0 to Z) table