قضیه هارتمن-گروبمن
در ریاضیات، در مطالعه سیستمهای دینامیکی، قضیه هارتمن-گروبمن یا قضیه خطیسازی یک قضیه دربارهٔ رفتار موضعی سامانههای دینامیکی در همسایگی یک نقطه تعادل هذلولیوار است. این قضیه ادعا میکند که خطیسازی - سادهسازی طبیعی سیستم - در پیشبینی الگوهای کیفی رفتار مؤثر است. این قضیه نام خود را مدیون فیلیپ هارتمن و دیوید ام گروبمن میباشد.
قضیه اصلی
سیستمی را در نظر بگیرید که در زمان با حالت در حال تحول است، به طوری که معادله دیفرانسیل را برای برخی از نگاشتهای هموار ارضا میکند. فرض کنید نگاشت حالت تعادلی هذلولیوار دارد: به این معنا که، و ماتریس ژاکوبی از در حالت هیچ مقدارویژهای با قسمت حقیقی برابر با صفر ندارد. سپس همسایگی از تعادل و یک همسانریختی وجود دارد، به طوری که و همچنین شار در همسایگی از طریق نگاشت پیوسته با شار خطیسازی آن ، مزدوج توپولوژیکی است.[۱][۲][۳][۴]
حتی برای نگاشتهای بینهایت مشتقپذیر ، همسانریختی لازم نیست که هموار باشد، و نه حتی به صورت محلی لیپشیتس. با این حال، به نظر میرسد پیوسته هولدر است، و یک توان وابسته به ثابت هذلولیوار .[۵]
قضیه هارتمن - گروبمن به فضاهای نامتناهی باناخ، سیستمهای ناخودگرد الگو:به انگلیسی (بهطور بالقوه تصادفی) تعمیم یافتهاست، و بدینترتیب تفاوتهای توپولوژیکی که در حالتهای مربوط به مقادیر ویژه صفر و نزدیک به صفر ایجاد میگردند نیز قابل تشخیص خواهند بود.[۶][۷][۸][۹]
مثال
سیستم دو بعدی را با متغیرهای در حال تحول در نظر بگیرید. با توجه به جفت معادلات دیفرانسیل تزویجشده الگو:به انگلیسی است الگو:وسطچین و الگو:پایان وسطچین با محاسبه مستقیم میتوان دریافت که تنها تعادل این سیستم در مبدأ، یعنی قرار دارد. تبدیل مختصات، که ، به این صورت است: الگو:وسطچین الگو:پایان وسطچین نگاشت فوق، نگاشتی بین مختصات اصلی و مختصات جدید است که دست کم در نزدیکی نقطه تعادل واقع در مبدأ هموار میباشد. در مختصات جدید سیستم دینامیکی به حالت خطیشدگی خود تبدیل میگردد: الگو:وسطچین و الگو:پایان وسطچین یعنی یک نسخه اعوجاج یافته از حالت خطیشده، دینامیک اصلی را در یک همسایگی متناهی تولید مینماید.