نسبت طلایی


در ریاضیات، دو کمیت دارای نسبت طلایی الگو:انگلیسی اند اگر نسبت آنها برابر با نسبت جمعشان به کمیت بزرگتر باشد. میتوان این خاصیت را برای زمانی که باشد، بهصورت جبری زیر بیان نمود: الگو:وسطچین الگو:پایان وسطچین که در آن حرف فی یونانی ( یا )، نمایانگر نسبت طلایی است.[۱]الگو:Efn این نسبت عدد گنگی است که جوابی برای معادله مربعی نیز میباشد، جواب مورد نظر معادله مذکور بدین صورت است: الگو:وسطچین [۲][۳] الگو:پایان وسطچین نسبت طلایی را میانگین طلایی (Golden Mean) یا مقطع طلایی (Golden Section) (از لاتین: sectio aurea) نیز مینامند.الگو:Sfn[۴] نامهای دیگری شامل این موارد نیز استفاده میگردند: نسبت غایی و میانگین (Extreme and Mean Ratio),[۵] مقطع میانی (Medial Section)، نسبت الهی (Divine Section) (لاتین: sectio divina)، تناسب طلایی (Golden Proportion)، برش طلایی (Golden Cut),[۶] و عدد طلایی (Golden Number).[۷][۸][۹]
ریاضیدانان از زمان اقلیدس به مطالعه خواص نسبت طلایی پرداختهاند، خواصی چون ظاهر آن در ابعاد یک پنجضلعی و در مثلث طلایی که میتوان آن را به یک مربع و مستطیل کوچکتری با همان نسبت ابعادی برش داد. نسبت طلایی در تحلیل تناسب اشیاء طبیعی و همچنین سامانههای مصنوعی ساخت انسان چون بازارهای مالی، و در برخی موارد برازش با دادههای مشکوک نیز به کار گرفته شدهاست.[۱۰] نسبت طلایی در برخی از الگوهای طبیعی شامل آرایش مارپیچگونهٔ برگها و سایر اجزای گیاهان نیز پدیدار میگردد.
برخی از هنرمندان و معماران قرن بیستم شامل لو کوربوزیه و سالوادور دالی، آثارشان را در تناسب تقریبی با نسبت طلایی قرار داده و معتقدند که این مسئله موجب بالارفتن جنبه زیباشناختی آثارشان میگردد. اینگونه کاربردها اغلب به فرم مستطیل طلایی ظاهر شده که در آن نسبت طول بزرگتر به کوچکتر برابر با نسبت طلایی است.
محاسبه
| الگو:وسطچین
فهرست اعداد – اعداد گنگ | |
| دودویی | الگو:Gaps... |
| دهدهی | الگو:Val...[۳] |
| مبنای ۱۶ | الگو:Gaps... |
| کسر مسلسل | |
| فرم جبری | |

دو کمیت a و b را نسبت طلایی نامند اگر: الگو:وسطچین [۱] الگو:پایان وسطچین یک روش جهت یافتن مقدار ، این است که از کسر سمت چپ شروع کرده و با ساده سازی و جایگزینی به عبارت زیر برسیم: الگو:وسطچین الگو:پایان وسطچین ازین رو خواهیم داشت: الگو:وسطچین الگو:پایان وسطچین که با ضرب معادله زیر را میدهد: الگو:وسطچین
الگو:پایان وسطچین که با بازآرایی تبدیل به این عبارت میگردد: الگو:وسطچین الگو:پایان وسطچین با استفاده از فرمول مربعی، دو جواب بهدست میآیند: الگو:وسطچین and الگو:پایان وسطچین چون نسبتی بین دو کمیت مثبت است، پس کمیتی مثبت میباشد: الگو:وسطچین الگو:پایان وسطچین
تاریخچه
الگو:همچنین ببینید به گفته ماریو لیویو:
ریاضیدانان یونان باستان اولین کسانی بودند که آن چیزی که امروز به نسبت طلایی میشناسیم را به دلیل حضور فراوانش در هندسه مورد مطالعه قرار دادند؛الگو:Sfn تقسیم خط به «نسبت میانگین و غایی» (مقطع طلایی)، درهندسه ستاره پنجپر و پنجضلعیها واجد اهمیت است.الگو:Sfn براساس یک روایت، ریاضیدان قرن پنج پیش از میلاد به نام هیپاسوس کشف نمود که نسبت طلایی نه یک عدد صحیح است و نه گویا (بلکه یک عدد گنگ است)، این امر موجب شگفتی فیثاغورسیان گشت.الگو:Sfn کتاب «اصول اقلیدس» (حدود ۳۰۰ قبل از میلاد)، چندین گزاره و اثباتهای آن را به نسبت طلایی اختصاص دادهالگو:Sfnالگو:Efn و اولین تعریف شناخته شده از آن را بیان نمودهاست:[۱۲]

نسبت طلایی طی هزاره بعدی به عنوان موضوعی حاشیهای و غیر مهم مورد مطالعه قرار گرفت. ابوکامل (حدود ۸۵۰ تا ۹۳۰ میلادی) این نسبت را جهت محاسبات هندسی پنجضلعیها و دهضلعیها به کار برد؛ نوشتجات او الهامبخش فیبوناچی بود (لئوناردو از پیزا) (در حدود ۱۱۷۰ تا ۱۲۵۰)، که از این نسبت در مسائل هندسی مرتبط با آن استفاده نمود، گرچه که هیچگاه بین آنها و دنباله عددی که اکنون به نام خودش معروفاند، ارتباطی ایجاد نکرد.الگو:Sfn
لوکا پاچیولی کتاب خود را با نام در باب تناسب الهی (۱۵۰۹ میلادی) را بر اساس همین نسبت نامگذاری نمود، این کتاب خواص این نسبت همچون ظهور آن در برخی از اجسام افلاطونی را نیز در بر میگرفت.[۹]الگو:Sfn لئوناردو داوینچی، که کتاب مذکور را تصویر آرایی نمود، از این نسبت، sectio aurea (به معنی «مقطع طلایی») یاد نمود.[۱۳] ریاضیدانان قرن ۱۶م میلادی چون رافائل بومیلی، برخی از مسائل هندسی را با کمک این نسب حل نمودند.الگو:Sfn
ریاضیدان آلمانی به نام سیمون جیکوب (فوت در ۱۵۶۴ میلادی) خاطر نشان میسازد که اعداد فیبوناچی پیاپی، به نسبت طلایی میل میکنند (یعنی نسبت اعداد فیبوناچی پشت سرهم)؛[۱۴] این حقیقت مجدداً توسط یوهانس کپلر در ۱۶۰۸ میلادی کشف شد.الگو:Sfn اولین تخمین در مبنای ده از معکوس نسبت طلایی، در سال ۱۵۹۷ میلادی توسط مایکل مستلین از دانشگاه توبینگن، در قالب نامهای به دانشآموز گذشتهٔ خود به نام کپلر، به صورت «حدوداً ۰٫۶۱۸۰۳۴۰» بیان شد.[۱۵] در همان سال، کپلر به مستلین از مثلث کپلر نامه نوشت و در آن نسبت طلایی را با قضیه فیثاغورس ترکیب نمود. کپلر اینگونه مینویسد:
ریاضیدانان قرن ۱۸م میلادی به نامهای ابراهام دو مواور، دانیل برنولی، و لئونارد اویلر از فرمولی بر مبنای نسبت طلایی استفاده نمودند که مقدار عدد فیبوناچی را بر پایه موقعیتش در دنباله بهدست میآورد؛ در ۱۸۴۳ میلادی، این حقیقت توسط جکوئس فیلیپ ماری بینت، مجدداً کشف شد و از همین رو این فرمول به «فرمول بینت» (Binet's Formula) معروف شد.[۱۶] مارتین اهم، اولین کسی بود که از اصطلاح آلمانی goldener Schnitt (به معنی «مقطع طلایی») جهت توصیف این نسبت در ۱۸۳۵ میلادی استفاده نمود.[۱۷] جیمز سولی در سال ۱۸۷۵ میلادی از اصطلاح انگلیسی معادلی برای آن استفاده نمود.[۱۸]
در ۱۹۱۰ میلادی، ریاضیدانی به نام مارک بار، شروع به استفاده از الفبای یونانی فی «»، به عنوان نمادی برای نسبت طلایی نمود.[۱۹]الگو:Efn همچنین این عدد با نماد (تاو)، حرف اول کلمه ای از یونان باستان (τομή به معنای «برش» یا «مقطع») نیز نمایش داده شده.الگو:Sfn[۲۰]
راجر پنروز، بین سالهای ۱۹۷۳ و ۱۹۷۴ میلادی، کاشیکاری پنروز را توسعه داد که الگویی مرتبط با نسبت طلایی است، هم از نظر نسبت مساحتهای دو کاشی لوزی شکل آن و همچنین از نظر فراوانی نسبیشان در الگو.[۲۱] کاشیکاری پنروز منجر به کشف شبهکریستالها توسط دن شختمن در اوایل دهه ۱۹۸۰ میلادی شد،[۲۲][۲۳] برخی از این شبهبلورها از خود تقارن بیستوجهی بروز میدهند.الگو:Sfn[۲۴]
طبیعت
لئوناردو دا وینچی اولین کسی بود که نسبت دقیق استخوانهای انسان را اندازهگیری نمود و ثابت کرد که این تناسبات با ضریب عدد طلایی هستند.
کپلر (Johannes Kepler 1571-1630) منجم معروف نیز علاقه بسیاری به نسبت طلایی داشت بگونهای که در یکی از کتابهای خود اینگونه نوشت: «هندسه دارای دو گنج بسیار با اهمیت میباشد که یکی از آنها قضیه فیثاغورث و دومی رابطه تقسیم یک پاره خط با نسبت طلایی میباشد. اولین گنج را میتوان به طلا و دومی را به جواهر تشبیه کرد». تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف میباشد.
نسبت طلایی در طبیعت
نسبت طلایی به صورت نامحدود در جاهای مختلف استفاده شدهاست و در واقع کسی نمیتواند میزان آنها را حساب کند. اغلب میتوان اعداد فیبوناچی را به تعداد معین در طبیعت پیدا کرد که مطالعه در نحوه رشد گیاهان گوناگون یکی از چیزهایی است که میتوان نسبت طلایی را مشاهده کرد. بیشتر هنرمندان به همین دلیل از نسبت طلایی در طراحیهای خود استفاده میکنند. چند نمونه از نسبت طلایی در طبیعت را در زیر معرفی کردهایم:
- میوه و دانههای آن و سبزیجات: اگر کمی به مرکز دانهها توجه کنید و روند تعدادی مارپیچ را دنبال کنید به یکی از اعداد فیبوناچی خواهید رسید. به عنوان مثال اگر تعداد مارپیچهای به کار رفته در دانهٔ آفتابگردان را بشمرید به عدد پی در دنبالهٔ فیبوناچی خواهید رسید. همچنین میتوان الگوریتم این مارپیچها را در کلم، کاهو و آناناس نیز مشاهده کرد.
- گلها و شاخههای درختان: گیاهان و شاخههای درختان جزو مواردی هستند که به راحتی میتوانید نسبت طلایی را در آنها مشاهده کنید. اگر به روند رشد یک درخت در طولانی مدت نگاه کنید، مسیر رشد یک دنباله فیبوناچی را تشکیل میدهد. برای گلها نیز این چنین است و اگر تعداد گلبرگهای یک گل را بشمارید، غالباً تعداد کل را به عنوان یکی از اعداد در دنباله فیبوناچی خواهید دید. نمونهٔ بارز آن نیز گلبرگهای گل رز است.
- آناتومی بدن انسان: اگر به خود در آینه نگاه کنید این نسبت را درک خواهید کرد. در بدن انسان این تقسیمبندی به درستی اجرا شدهاست و حتی در مولکولهای DNA نیز وجود دارد و در هر مارپیچ از DNA این میزان کاملاً قابل اندازهگیری است.
جستارهای وابسته
یادداشتها
ارجاعات
منابع
برای مطالعه بیشتر
- الگو:Cite book
- الگو:Cite book
- الگو:Cite book
- الگو:Cite book
- الگو:Cite book
- الگو:Cite book
- الگو:Cite book
- الگو:Cite book
پیوند به بیرون
- الگو:Springer
- "Golden Section" by Michael Schreiber, Wolfram Demonstrations Project, 2007.
- الگو:MathWorld
- الگو:Cite web Information and activities by a mathematics professor.
- The Pentagram & The Golden Ratio. Green, Thomas M. Updated June 2005. Archived November 2007. Geometry instruction with problems to solve.
- The Myth That Will Not Go Away, by Keith Devlin, addressing multiple allegations about the use of the golden ratio in culture.
- Spurious golden spirals collected by Randall Munroe
الگو:Navbox الگو:Navbox الگو:نسبتهای فلزی الگو:ریاضیات یونان باستان الگو:ریاضیات و هنر
- ↑ ۱٫۰ ۱٫۱ الگو:Cite web
- ↑ الگو:Cite web
- ↑ ۳٫۰ ۳٫۱ الگو:OEIS2C
- ↑ Dunlap, Richard A. , The Golden Ratio and Fibonacci Numbers, World Scientific Publishing, 1997
- ↑ Euclid, Elements, Book 6, Definition 3.
- ↑ Summerson John, Heavenly Mansions: And Other Essays on Architecture (New York: W.W. Norton, 1963) p. 37. "And the same applies in architecture, to the rectangles representing these and other ratios (e.g. the 'golden cut'). The sole value of these ratios is that they are intellectually fruitful and suggest the rhythms of modular design."
- ↑ Jay Hambidge, Dynamic Symmetry: The Greek Vase, New Haven CT: Yale University Press, 1920
- ↑ William Lidwell, Kritina Holden, Jill Butler, Universal Principles of Design: A Cross-Disciplinary Reference, Gloucester MA: Rockport Publishers, 2003
- ↑ ۹٫۰ ۹٫۱ Pacioli, Luca. De divina proportione, Luca Paganinem de Paganinus de Brescia (Antonio Capella) 1509, Venice.
- ↑ الگو:Cite news
- ↑ الگو:MathWorld
- ↑ الگو:Cite book
- ↑ الگو:Cite journal
- ↑ الگو:Cite journal
- ↑ الگو:Cite web
- ↑ الگو:MathWorld
- ↑ الگو:Cite book
- ↑ الگو:Cite book
- ↑ الگو:Cite book
- ↑ الگو:Mathworld
- ↑ الگو:Cite book
- ↑ الگو:Cite web
- ↑ الگو:Citation
- ↑ الگو:Cite journal