مرکز (نظریه گروه‌ها)

از testwiki
نسخهٔ تاریخ ۱۲ اکتبر ۲۰۲۲، ساعت ۲۱:۴۲ توسط imported>InternetArchiveBot (Add 1 book for ویکی‌پدیا:تأییدپذیری (20221011)) #IABot (v2.0.9.2) (GreenC bot)
(تفاوت) → نسخهٔ قدیمی‌تر | نمایش نسخهٔ فعلی (تفاوت) | نسخهٔ جدیدتر ← (تفاوت)
پرش به ناوبری پرش به جستجو

الگو:Short description الگو:چپ‌چین

جدول کیلی برای D4، عناصر مرکز این گروه (یعنی {e,a2}) که به صورت متقارن حول قطر اصلی آرایش یافته و رنگ آمیزی شده اند
o e b a a2 a3 ab a2b a3b
e e b a a2 a3 ab a2b a3b
b b e a3b a2b ab a3 a2 a
a a ab a2 a3 e a2b a3b b
a2 a2 a2b a3 e a a3b b ab
a3 a3 a3b e a a2 b ab a2b
ab ab a b a3b a2b e a3 a2
a2b a2b a2 ab b a3b a e a3
a3b a3b a3 a2b ab b a2 a e

الگو:پایان چپ‌چین در جبر مجرد، مرکز الگو:انگلیسی گروهی چون G، مجموعه عناصری اند که با تمام عناصر گروه جابه‌جا می‌گردند. این مجموعه را با Z(G) نمایش داده که از حرف اول کلمه Zentrum در آلمانی (به معنای مرکز) گرفته شده است. براساس نماد مجموعه-ساز، این مجموعه به صورت زیر نمایش داده می‌شود: الگو:وسط‌چین Z(G)={zGgG,𝑧𝑔=𝑔𝑧} الگو:پایان وسط‌چین مرکز، یک زیرگروه نرمال است: Z(G)G. این مجموعه به عنوان یک زیرگروه، همیشه مشخصه است (یعنی «زیرگروه مشخصه»)، اما لزوماً «مشخصه کامل» نیست. گروه خارج‌قسمتی G/Z(G)، یکریخت با گروه اتومورفیسم داخلی (خودریختی داخلی) Inn(G) است.

گروهی چون G آبلی است اگر و تنها اگر Z(G)=G باشد. حالت مقابل آن زمانی پیش می‌آید که مرکز گروه بدیهی باشد (یعنی یک عضوی باشد، که همان عضو همانی گروه خواهد بود)، در این صورت گروه مورد نظر را «بی‌مرکز» می‌نامند.

برخی مواقع، عناصر مرکز گروه را مرکزی (central) می‌نامند.

منابع

الگو:پانویس الگو:چپ‌چین

الگو:پایان چپ‌چین

الگو:جبر مجرد-خرد