پرونده:OAM vs spin video.ogg

از testwiki
پرش به ناوبری پرش به جستجو
OAM_vs_spin_video.ogg (اندازهٔ پرونده: ۱٫۶۱ مگابایت، نوع MIME application/ogg)

این پرونده از ویکی‌انبار است و ممکن است توسط پروژه‌های دیگر هم استفاده شده باشد. توضیحات موجود در صفحهٔ توضیحات پرونده در آنجا، در زیر نشان داده شده است.

خلاصه

توضیح
English: The total angular momentum of light consists of two components (at least in the paraxial approximation). Both components act in a different way on a massive colloidal particle inserted into the beam of light, as shown in the animation. The spin component causes the particle to spin around its axis. It corresponds to the polarization of the beam and can take on only two values: with . A linear polarization can be seen as a superposition of the two and is represented by . In contrast, the other component, known as orbital angular momentum, causes the particle to rotate around the axis of the beam. It corresponds to the helical profile of the phase of the beam and can take on any value of the form , where is an integer. In the animation, only two values are shown.
Čeština: Celkový moment hybnosti světla sestává ze dvou složek (alespoň v paraxiální aproximaci). Obě složky působí odlišným způsobem na hmotné částečky vložené do svazku světla, jak je ukázáno v animaci. Spinová složka způsobí, že se částečka otáčí kolem své osy. Tato složka odpovídá polarizaci svazku a může nabývat pouze dvou hodnot: , kde . Lineární polarizaci lze chápat jako superpozici obou složek a představuje ji případ . Druhá složka, známá jako orbitální moment hybnosti, nutí částečku rotovat kolem osy svazku. Odpovídá jí šroubovicovitý profil fáze svazku a může nabývat jakékoliv hodnoty tvaru , kde je celé číslo. V animaci jsou ukázány pouze dvě hodnoty .
تاریخ
منبع اثر شخصی
پدیدآور JozumBjada

Source code

This animation was created using Wolfram language 13.0.1 for Microsoft Windows (64-bit) (January 28, 2022). The source code follows (formatted as a .wl package file).

(* ::Package:: *)

(* ::Title::Initialization:: *)
(*Spin vs. OAM*)


(* ::Subtitle::Initialization:: *)
(*Comparison of the action of spin and orbital angular momentum on massive particles*)


(* ::Section::Initialization:: *)
(*Preliminaries*)


(* ::Input::Initialization:: *)
fontSize=50;
fontFamily="CMU Serif";


(* ::Input::Initialization:: *)
omegaSpin=8;
omegaOAM=4;


(* ::Input::Initialization:: *)
num=30;
numStages=6;
\[CapitalDelta]t=1/(num numStages);


(* ::Input::Initialization:: *)
opts={Boxed->False,ViewPoint->{-1.551586529122855`,-2.4910493736907173`,1.6844145156343122`},ViewVertical->{-1,0,0},PlotRange->{{-3.7,3.6},{-3.5`,3.5`},{-4.8`,2.1`}}};


(* ::Section::Initialization:: *)
(*Intensity profiles 3D*)


(* ::Input::Initialization:: *)
Module[{l=2,w0=2,\[Lambda]=1,w0f,plot,zR,w,fun},
{w0f,zR}={0.05w0,(\[Pi] w0^2)/\[Lambda]};
w[z_]:=w0 Sqrt[1+(z/zR)^2];
fun[x_,y_,z_,l_,w0_]:=Module[{r=Sqrt[x^2+y^2]},Sqrt[2./(\[Pi] Abs[l]!)] w0/w[z] ((r Sqrt[2])/w[z])^Abs[l] Exp[-(r/w[z])^2]];

plot=DensityPlot3D[Abs[fun[x,y,z,l,w0]/fun[w0 Sqrt[l/2],0,0,l,w0]]^2,{x,-4,4},{y,-4,4},{z,0,5},OpacityFunction->Function[x,.07(1-Exp[-25 x^2])],ColorFunction->(Blend[{Purple,Orange},#]&),PlotPoints->70];
rastShaft=First@Cases[InputForm[plot],_Raster3D,Infinity,1];

plot=DensityPlot3D[Abs[fun[x,y,z,l,w0f]/fun[w0f Sqrt[l/2],0,0,l,w0f]]^2,{x,-4,4},{y,-4,4},{z,0,2},OpacityFunction->Function[x,.07(1-Exp[-25 x^2])],ColorFunction->(Blend[{Purple,Orange},#]&),PlotPoints->50];
rastFlange=First@Cases[InputForm[plot],_Raster3D,Infinity,1];
]


(* ::Section::Initialization:: *)
(*Components*)


(* ::Input::Initialization:: *)
{helixFun[2],helixFun[-2]}=Module[{aux},
aux=ParametricPlot3D[{u Cos[# 2\[Pi] t],u Sin[# 2\[Pi] t],t},{t,0,5},{u,1,3},PlotPoints->50,Mesh->None,Boxed->False,Axes->False];
First@Cases[InputForm[aux],_GraphicsComplex,Infinity,1]
]&/@{-1/2,+1/2};


(* ::Input::Initialization:: *)
hb=BoundaryDiscretizeRegion@RegionIntersection[Ball[{0,0,0},1],Cuboid[-1.1{1,1,1},1.1{1,1,0}]];
hb=First@Cases[InputForm[Show[hb]],_GraphicsComplex,Infinity,1];
hb=GraphicsComplex[hb[[1]],{EdgeForm[],hb[[2,2]]}];
ball=Scale[Rotate[{Green,hb,Red,Rotate[hb,\[Pi],{1,0,0}]}, \[Pi]/2,{0,1,0}],0.8];


(* ::Input::Initialization:: *)
arrow=Table[2{Cos[x],Sin[x],0},{x,0,2\[Pi] 0.95,0.1}];
AppendTo[arrow,With[{x=2\[Pi] 0.98},2.1{Cos[x],Sin[x],0}]];
{arrowSpinR,arrowSpinL}=
{Black,Arrowheads[0.05],Arrow[Tube[(RotationTransform[-\[Pi]/2,{0,0,1}]@*ScalingTransform[0.45{1,1,1}]@*TranslationTransform[{0,0,0.2}])[If[#,RotationTransform[-(\[Pi]/5),{0,0,1}]@RotationTransform[\[Pi],{1,0,0}][arrow],arrow]],0.04]]}&/@{True,False};
{arrowOAMR,arrowOAML}=
{Black,Arrowheads[0.05],Arrow[Tube[(RotationTransform[-\[Pi]/2,{0,0,1}]@*TranslationTransform[{0,0,0.1}])[If[#,RotationTransform[-(\[Pi]/5),{0,0,1}]@RotationTransform[\[Pi],{1,0,0}][arrow],arrow]],0.04]]}&/@{True,False};


(* ::Section::Initialization:: *)
(*Insets*)


(* ::Input::Initialization:: *)
label[text_,opts_:Plain]:=Style[text,opts,fontSize,FontFamily->fontFamily]


(* ::Input::Initialization:: *)
dashedLine={Lighting->"Neutral",Gray,Dashing[{.1,.04}],Thickness[0.005],Line[{{0,0,-6},{0,0,2}}]};


(* ::Input::Initialization:: *)
insetOAM[t_,l_]:=Graphics3D[{dashedLine,{Rotate[Translate[helixFun[l],{0,0,-5}],2\[Pi] Sign[l]omegaOAM t,{0,0,1}]}},Sequence@@opts]


(* ::Input::Initialization:: *)
vecplot=VectorPlot[{1,0},{x,-1,1},{y,-1,1},RegionFunction->(0.5<=#1^2+#2^2<=1.2&),VectorPoints->{8,8},VectorScale->Small,VectorStyle->Purple];
pos=Cases[InputForm[vecplot],Arrow[pts_]:>Append[ScalingTransform[2.5{1,1}][First[pts]],-2],Infinity];
arrowsFun[t_,0]:=Module[{len=Cos[2\[Pi] t]},If[Abs@len<0.5,Line[{#,#+{len,0,0}}]&/@pos,Arrow[{#,#+{len,0,0}}]&/@pos]];
arrowsFun[t_,\[Sigma]_]:=Arrow@Tube[{#,#+Append[AngleVector[2\[Pi] \[Sigma] t],0]}]&/@pos;


(* ::Input::Initialization:: *)
insetSpin[t_,\[Sigma]_]:=Graphics3D[{dashedLine,{Purple,arrowsFun[t,\[Sigma]]}},Sequence@@opts]


(* ::Input::Initialization:: *)
With[{pt={0.15,0.1},tots={-3,-2,-1,1,2,3},\[CapitalDelta]=.4,num=6},
buttons=Table[{EdgeForm[{Purple,Thickness[0.005]}],Blend[{White,Purple},.5],Rectangle[-pt+{\[CapitalDelta] idx,0},pt+{\[CapitalDelta] idx,0},RoundingRadius->.05],Text[Style[tots[[idx]],Bold,Black,fontSize,FontFamily->fontFamily],{\[CapitalDelta] idx,0}]},{idx,num}];
]
insetCount[l_,\[Sigma]_]:=Module[{count=l+\[Sigma],buttons=buttons,active},
If[count<0,count+=4,count+=3];
buttons=MapAt[ReplaceAll[col_?ColorQ:>Blend[{White,col},0.3]],buttons,Transpose[{Drop[Range[Length[buttons]],{count}]}]];
Prepend[buttons,Text[label["\[ScriptL]\[ThinSpace]+\[ThinSpace]\[Sigma]:"],{0,0}]]
]


(* ::Section::Initialization:: *)
(*Scene*)


(* ::Input::Initialization:: *)
scene[t_,tloc_,l_,\[Sigma]_]:=Graphics[{
Inset[Graphics3D[{
Translate[rastShaft,{0,0,-5}],
Translate[rastFlange,{0,0,-1.5}],
Rotate[Translate[helixFun[l],{0,0,-5}],Sign[l]2\[Pi] omegaOAM t,{0,0,1}],
Switch[l,2,arrowOAML,-2,arrowOAMR],
Translate[{
Rotate[ball,If[\[Sigma]!=0,2\[Pi] \[Sigma] omegaSpin t,2\[Pi] (-1)omegaSpin (\[CapitalDelta]t num)If[l>0,4,1]],{0,0,1}],
Switch[\[Sigma],0,{},1,arrowSpinL,-1,arrowSpinR]
},2{Cos[Sign[l]2\[Pi] omegaOAM t],Sin[Sign[l]2\[Pi] omegaOAM t],0}]
},Sequence@@opts]
,{-0.3,0.0},ImageScaled[{1,1}/2],2.7]
,
Inset[insetOAM[t,l],{1.1,0.3},ImageScaled[{1,1}/2],1.1],
Inset[insetSpin[tloc,\[Sigma]],{1.1,-0.55},ImageScaled[{1,1}/2],1.1],
Translate[insetCount[l,\[Sigma]],{-1.25,-1.15}],
Text[
TextGrid[{
{label["OAM",Bold],label[":",Bold],label["\[ScriptL]"],label["= "<>ToString[l]]},
{label["spin",Bold],label[":",Bold],label["\[Sigma]"],label["= "<>ToString[\[Sigma]]]}
},Alignment->{{Right,Center,Right,Left},Center},Spacings->{{0.1,0.1,0.5},25}],
{0.5,0.9},{-1,1}]
},PlotRange->{1.5{-1,1},{-1.3,1}},ImageSize->1000]


(* ::Input::Initialization:: *)
animationStages[tglob_,t_,stage_]:=Module[{l,\[Sigma]},
{l,\[Sigma]}=Switch[stage-1,0,{-2,-1},1,{-2,0},2,{-2,1},3,{2,-1},4,{2,0},5|6,{2,1}];
scene[tglob,t,l,\[Sigma]]
]


(* ::Section::Initialization:: *)
(*Rasterization and export*)


(* ::Input::Initialization:: *)
SetDirectory[NotebookDirectory[]]


(* ::Input::Initialization:: *)
seq=Module[{tglob=0},Flatten[Table[animationStages[\[CapitalDelta]t tglob++,t,s],{s,1,numStages},{t,N@Subdivide[num-1]}],1]];


(* ::Input::Initialization:: *)
AbsoluteTiming[frames=Rasterize[#,RasterSize->600]&/@seq;]


(* ::Input::Initialization:: *)
Export["oam_vs_spin_video.ogv", Video@AnimatedImage[frames, FrameRate -> 6]]

اجازه‌نامه

من، صاحب حقوق قانونی این اثر، به این وسیله این اثر را تحث اجازه‌نامهٔ ذیل منتشر می‌کنم:
w:fa:کرییتیو کامنز
انتساب انتشار مشابه
این پرونده تحت پروانهٔ Creative Commons Attribution-Share Alike 4.0 International منتشر شده است.
شما اجازه دارید:
  • برای به اشتراک گذاشتن – برای کپی، توزیع و انتقال اثر
  • تلفیق کردن – برای انطباق اثر
تحت شرایط زیر:
  • انتساب – شما باید اعتبار مربوطه را به دست آورید، پیوندی به مجوز ارائه دهید و نشان دهید که آیا تغییرات ایجاد شده‌اند یا خیر. شما ممکن است این کار را به هر روش منطقی انجام دهید، اما نه به هر شیوه‌ای که پیشنهاد می‌کند که مجوزدهنده از شما یا استفاده‌تان حمایت کند.
  • انتشار مشابه – اگر این اثر را تلفیق یا تبدیل می‌کنید، یا بر پایه‌ آن اثری دیگر خلق می‌کنید، می‌‌بایست مشارکت‌های خود را تحت مجوز same or compatible license|یکسان یا مشابه با اصل آن توزیع کنید.

عنوان

شرحی یک‌خطی از محتوای این فایل اضافه کنید
Action of angular momentum of light on a bead

آیتم‌هایی که در این پرونده نمایش داده شده‌اند

توصیف‌ها

source of file انگلیسی

تاریخچهٔ پرونده

روی تاریخ/زمان‌ها کلیک کنید تا نسخهٔ مربوط به آن هنگام را ببینید.

تاریخ/زمانابعادکاربرتوضیح
کنونی۱۹ اوت ۲۰۲۲، ساعت ۱۴:۱۵ (۱٫۶۱ مگابایت)wikimediacommons>JozumBjadaUploaded own work with UploadWizard

صفحهٔ زیر از این تصویر استفاده می‌کند: