پرونده:Squaring the circle-Ramanujan-1914.svg

از testwiki
پرش به ناوبری پرش به جستجو
پروندهٔ اصلی (پروندهٔ اس‌وی‌جی، با ابعاد ۹۷۳ × ۸۹۴ پیکسل، اندازهٔ پرونده: ۱۹۱ کیلوبایت)

این پرونده از ویکی‌انبار است و ممکن است توسط پروژه‌های دیگر هم استفاده شده باشد. توضیحات موجود در صفحهٔ توضیحات پرونده در آنجا، در زیر نشان داده شده است.

خلاصه

توضیح
Deutsch: Quadratur des Kreises, Näherungskonstruktion nach Ramanujan von 1914, mit Weiterführung der Konstruktrion
English: Squaring the circle, approximitiy construction according Ramanujan of 1914, with continuation of the construction
تاریخ
منبع اثر شخصی
پدیدآور Petrus3743
دیگر نسخه‌ها
Quadratur des Kreises, Näherungskonstruktion nach Ramanujan von 1914, mit Weiterführung der Konstruktrion, Animation
Squaring the circle, approximitiy construction according Ramanujan of 1914, with continuation of the construction, animation
SVG genesis
InfoField
 کد مبدأ این اس‌وی‌جی معتبر است.
 این نمودار با ژئوجبرا و به‌دست Petrus3743 ساخته شده است.
 This SVG trigonometry uses the path text method.

Im Jahr 1914 ermittelte Ramanujan für eine noch genauere Quadratur als die von 1913, den folgenden Näherungswert für die Kreiszahl

[1]

in dem acht Nachkommastellen mit denen von gleich sind.

Ramanujan konstruierte in dieser Quadratur nicht die Seitenlänge des gesuchten Quadrates, es genügte ihm die Strecke OS darzustellen.[2] In der obigen Weiterführung der Konstruktion, wird die Strecke OS zusammen mit der Strecke OB zur Darstellung der mittleren Proportionalen (rote Strecke OG) herangezogen.[3]

Fehler

Bei einem Kreis mit Radius r = 1 [LE]:

  • Konstruierte Seite des Quadrates a = 1,77245385062141... [LE]
  • Soll-Seite des Quadrates as = = 1,772453850905516... [LE]
  • Absoluter Fehler = a - as = -0,00000000028411... = -2,841...E-10 [LE]
  • Fläche des konstruierten Quadrates A = a2 = 3,14159265258265... [FE]
  • Soll-Fläche des Quadrates As = = 3,141592653589793... [FE]
  • Absoluter Fehler = A - As = -0,000000001007143... = -1,007...E-9 [FE]

Beispiele zur Veranschaulichung der Fehlers

  • Bei einem Kreis mit dem Radius r = 10.000 km wäre der Fehler der Seite a ≈ -2,8 mm
  • Bei einem Kreis mit dem Radius r = 10 m wäre der Fehler der Fläche A ≈ -0,1 mm2

Error

In a circle of radius r = 1 [unit length, ul]:

  • Constructed side of the square a = 1.77245385062141... [ul]
  • Target side of the square as = = 1.772453850905516... [ul]
  • Absolute error = a - as = -0.00000000028411... = -2.841...E-10 [ul]
  • Surface of the constructed square A = a2 = 3.14159265258265... [unit area, ua]
  • Target area of the square As = = 3.141592653589793... [ua]
  • Absolute error = A - As = -0,000000001007143... = -1.007...E-9 [ua]

Examples to illustrate the errors:

  • In a circle of radius r = 10,000 km would be the fault of the side length a ≈ -2.8 mm
  • In the case of a circle with the radius r = 10 m would be the error of the surface A ≈ -0.1 mm2

اجازه‌نامه

من، صاحب حقوق قانونی این اثر، به این وسیله این اثر را تحث اجازه‌نامهٔ ذیل منتشر می‌کنم:
w:fa:کرییتیو کامنز
انتساب انتشار مشابه
این پرونده تحت پروانهٔ Creative Commons Attribution-Share Alike 4.0 International منتشر شده است.
شما اجازه دارید:
  • برای به اشتراک گذاشتن – برای کپی، توزیع و انتقال اثر
  • تلفیق کردن – برای انطباق اثر
تحت شرایط زیر:
  • انتساب – شما باید اعتبار مربوطه را به دست آورید، پیوندی به مجوز ارائه دهید و نشان دهید که آیا تغییرات ایجاد شده‌اند یا خیر. شما ممکن است این کار را به هر روش منطقی انجام دهید، اما نه به هر شیوه‌ای که پیشنهاد می‌کند که مجوزدهنده از شما یا استفاده‌تان حمایت کند.
  • انتشار مشابه – اگر این اثر را تلفیق یا تبدیل می‌کنید، یا بر پایه‌ آن اثری دیگر خلق می‌کنید، می‌‌بایست مشارکت‌های خود را تحت مجوز same or compatible license|یکسان یا مشابه با اصل آن توزیع کنید.
  1. S. A. Ramanujan: Modular Equations and Approximations to π In: Quarterly Journal of Mathematics. 12. Another curious approximation to π is, 43, (1914), S. 350–372. Aufgelistet in: Published works of Srinivasa Ramanujan Abgerufen am 21. November 2016
  2. Modular Equations and Approximations to π In: Quarterly Journal of Mathematics. 12. Another curious approximation to π is ... Fig. 2, 44, (1914), S. 350–372. Aufgelistet in: Published works of Srinivasa Ramanujan Abgerufen am 21. November 2016
  3. Universität Magdeburg A.14 Mittelwerte. Mittlere Proportionale (PDF-Datei) Abgerufen am 21. November 2016

عنوان

شرحی یک‌خطی از محتوای این فایل اضافه کنید

آیتم‌هایی که در این پرونده نمایش داده شده‌اند

توصیف‌ها

source of file انگلیسی

تاریخچهٔ پرونده

روی تاریخ/زمان‌ها کلیک کنید تا نسخهٔ مربوط به آن هنگام را ببینید.

تاریخ/زمانبندانگشتیابعادکاربرتوضیح
کنونی۲۵ دسامبر ۲۰۱۶، ساعت ۱۴:۰۷تصویر بندانگشتی از نسخهٔ مورخ ۲۵ دسامبر ۲۰۱۶، ساعت ۱۴:۰۷۹۷۳ در ۸۹۴ (۱۹۱ کیلوبایت)wikimediacommons>Petrus3743≈ π ergänzt

صفحهٔ زیر از این تصویر استفاده می‌کند: