پرونده:Kernel trick idea.svg
از testwiki
پرش به ناوبری
پرش به جستجو
حجم پیشنمایش PNG این SVG file:۸۰۰ × ۳۴۳ پیکسل کیفیتهای دیگر: ۳۲۰ × ۱۳۷ پیکسل | ۶۴۰ × ۲۷۴ پیکسل | ۱٬۰۲۴ × ۴۳۹ پیکسل | ۱٬۲۸۰ × ۵۴۹ پیکسل | ۲٬۵۶۰ × ۱٬۰۹۷ پیکسل | ۱٬۳۴۴ × ۵۷۶ پیکسل.
پروندهٔ اصلی (پروندهٔ اسویجی، با ابعاد ۱٬۳۴۴ × ۵۷۶ پیکسل، اندازهٔ پرونده: ۱۳ کیلوبایت)
این پرونده از ویکیانبار است و ممکن است توسط پروژههای دیگر هم استفاده شده باشد. توضیحات موجود در صفحهٔ توضیحات پرونده در آنجا، در زیر نشان داده شده است.
خلاصه
| توضیحKernel trick idea.svg |
English: An illustration of kernel trick in SVM. Here the kernel is given by:
|
| تاریخ | |
| منبع | اثر شخصی |
| پدیدآور | Shiyu Ji |
Python Source Code
import numpy as np
import matplotlib
matplotlib.use('svg')
import matplotlib.pyplot as plt
from sklearn import svm
from matplotlib import cm
# Prepare the training set.
# Suppose there is a circle with center at (0, 0) and radius 1.2.
# All the points within the circle are labeled 1.
# All the points outside the circle are labeled 0.
nSamples = 100
spanLen = 2
X = np.zeros((nSamples, 2))
y = np.zeros((nSamples, ))
for i in range(nSamples):
a, b = [np.random.uniform(-spanLen, spanLen) for _ in ['x', 'y']]
X[i][0], X[i][1] = a, b
y[i] = 1 if a*a + b*b < 1.2*1.2 else 0
# Custom kernel,
def my_kernel(A, B):
gram = np.zeros((A.shape[0], B.shape[0]))
for i in range(A.shape[0]):
for j in range(B.shape[0]):
assert A.shape[1] == B.shape[1]
L2A, L2B = 0.0, 0.0
for k in range(A.shape[1]):
gram[i, j] += A[i, k] * B[j, k]
L2A += A[i, k] * A[i, k]
L2B += B[j, k] * B[j, k]
gram[i, j] += L2A * L2B
return gram
# SVM train.
clf = svm.SVC(kernel = my_kernel)
clf.fit(X, y)
coef = clf.dual_coef_[0]
sup = clf.support_
b = clf.intercept_
x_min, x_max = -spanLen, spanLen
y_min, y_max = -spanLen, spanLen
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the 2D layout.
fig = plt.figure(figsize = (6, 14))
plt1 = plt.subplot(121)
plt1.set_xlim([-spanLen, spanLen])
plt1.set_ylim([-spanLen, spanLen])
plt1.set_xticks([-1, 0, 1])
plt1.set_yticks([-1, 0, 1])
plt1.pcolormesh(xx, yy, Z, cmap=cm.Paired)
y_unique = np.unique(y)
colors = cm.rainbow(np.linspace(0.0, 1.0, y_unique.size))
for this_y, color in zip(y_unique, colors):
this_Xx = [X[i][0] for i in range(len(X)) if y[i] == this_y]
this_Xy = [X[i][1] for i in range(len(X)) if y[i] == this_y]
plt1.scatter(this_Xx, this_Xy, c=color, alpha=0.5)
# Process the training data into 3D by applying the kernel mapping:
# phi(x, y) = (x, y, x*x + y*y).
X3d = np.ndarray((X.shape[0], 3))
for i in range(X.shape[0]):
a, b = X[i][0], X[i][1]
X3d[i, 0], X3d[i, 1], X3d[i, 2] = [a, b, a*a + b*b]
# Plot the 3D layout after applying the kernel mapping.
from mpl_toolkits.mplot3d import Axes3D
plt2 = plt.subplot(122, projection="3d")
plt2.set_xlim([-spanLen, spanLen])
plt2.set_ylim([-spanLen, spanLen])
plt2.set_xticks([-1, 0, 1])
plt2.set_yticks([-1, 0, 1])
plt2.set_zticks([0, 2, 4])
for this_y, color in zip(y_unique, colors):
this_Xx = [X3d[i, 0] for i in range(len(X3d)) if y[i] == this_y]
this_Xy = [X3d[i, 1] for i in range(len(X3d)) if y[i] == this_y]
this_Xz = [X3d[i, 2] for i in range(len(X3d)) if y[i] == this_y]
plt2.scatter(this_Xx, this_Xy, this_Xz, c=color, alpha=0.5)
# Plot the 3D boundary.
def onBoundary(x, y, z, X3d, coef, sup, b):
err = 0.0
n = len(coef)
for i in range(n):
err += coef[i] * (x*X3d[sup[i], 0] + y*X3d[sup[i], 1] + z*X3d[sup[i], 2])
err += b
if abs(err) < .1:
return True
return False
Xr = np.arange(x_min, x_max, .02)
Yr = np.arange(y_min, y_max, .02)
Z = np.zeros(Z.shape)
for i in range(Xr.shape[0]):
x = Xr[i]
for j in range(Yr.shape[0]):
y = Yr[j]
for z in np.arange(0, 2, .02):
if onBoundary(x, y, z, X3d, coef, sup, b):
Z[i, j] = z
break
plt2.plot_surface(xx, yy, Z, cmap='summer', alpha=0.2)
plt.savefig("kernel_trick_idea.svg", format = "svg")
اجازهنامه
من، صاحب حقوق قانونی این اثر، به این وسیله این اثر را تحث اجازهنامهٔ ذیل منتشر میکنم:
این پرونده تحت پروانهٔ Creative Commons Attribution-Share Alike 4.0 International منتشر شده است.
- شما اجازه دارید:
- برای به اشتراک گذاشتن – برای کپی، توزیع و انتقال اثر
- تلفیق کردن – برای انطباق اثر
- تحت شرایط زیر:
- انتساب – شما باید اعتبار مربوطه را به دست آورید، پیوندی به مجوز ارائه دهید و نشان دهید که آیا تغییرات ایجاد شدهاند یا خیر. شما ممکن است این کار را به هر روش منطقی انجام دهید، اما نه به هر شیوهای که پیشنهاد میکند که مجوزدهنده از شما یا استفادهتان حمایت کند.
- انتشار مشابه – اگر این اثر را تلفیق یا تبدیل میکنید، یا بر پایه آن اثری دیگر خلق میکنید، میبایست مشارکتهای خود را تحت مجوز same or compatible license|یکسان یا مشابه با اصل آن توزیع کنید.
عنوان
شرحی یکخطی از محتوای این فایل اضافه کنید
آیتمهایی که در این پرونده نمایش داده شدهاند
توصیفها
این خصوصیت مقداری دارد اما نامشخص است.
source of file انگلیسی
original creation by uploader انگلیسی
۲۷ ژوئن 2017
تاریخچهٔ پرونده
روی تاریخ/زمانها کلیک کنید تا نسخهٔ مربوط به آن هنگام را ببینید.
| تاریخ/زمان | بندانگشتی | ابعاد | کاربر | توضیح | |
|---|---|---|---|---|---|
| کنونی | ۱۷ ژوئیهٔ ۲۰۲۰، ساعت ۱۵:۴۱ | ۱٬۳۴۴ در ۵۷۶ (۱۳ کیلوبایت) | wikimediacommons>SemperVinco | Optimized svg code |
کاربرد پرونده
صفحهٔ زیر از این تصویر استفاده میکند: