نظریه آشوب

از testwiki
پرش به ناوبری پرش به جستجو

الگو:دیگر کاربردها الگو:Short description

نموداری از جاذب لورنتس برایr=28,σ=10,b=8/3.
پویانمایی از آونگ دو-میله‌ای که در انرژی میانی، رفتار آشوبناک دارد. وقتی شرایط آغازین آونگ کمی متفاوت شوند، مسیر حرکتش بسیار متفاوت خواهد شد. آونگ دو-میله‌ای یکی از ساده‌ترین سامانه‌های دینامیکی با پاسخ آشوب‌ناک است.

نظریه آشوب الگو:انگلیسی، شاخه‌ای از ریاضیات است که به مطالعه سامانه‌های پویای آشوب‌ناک می‌پردازد؛ سامانه‌هایی که بی‌نظمی آن‌ها، در ظاهر، تصادفی است اما در واقع، از الگوها و قوانین قطعی پیروی می‌کند که به‌شدت به شرایط اولیه حساسند.[۱][۲] نظریه آشوب، دانشی میان‌رشته‌ایست که بر اساس آن، سامانه‌های پیچیده به‌ظاهر تصادفی، الگوها، درون‌پیوستگی‌ها، حلقه‌های بازخوردی، تکرار، خودهمانندی، فراکتال‌ها، و خودسازماندهی دارند.[۳] اثر پروانه‌ای، زیربنای نظریه آشوب است، و به توصیف این پدیده می‌پردازد که چگونه تغییرات بسیار کوچک در شرایط اولیه یک سامانه قطعی و غیرخطی، می‌تواند به تغییرات بزرگی در پاسخ سیستم بینجامد؛ یعنی وابستگی حساس به شرایط اولیه.[۴] استعاره‌ای از این رفتار، پروانه‌ای است که در تگزاس بال می‌زند و طوفانی در چین به‌پا می‌کند.[۵]

تغییرات کوچک در شرایط اولیه، مانند تغییرات در اثر گرد کردن اعداد در محاسبات، می‌تواند باعث واگرایی گسترده خروجی‌های چنین سامانه‌هایی شده، به‌گونه‌ای که پیش‌بینی بلندمدت رفتارشان را در حالت کلی، غیرممکن می‌سازد.[۶] بااین‌که این‌گونه سامانه‌ها قطعی هستند، ممکن است چنین شود. قطعی بودن به این معناست که رفتار آینده‌شان از سیر تکاملی منحصربه‌فردی پیروی کرده،[۷] کاملاً وابسته به شرایط اولیه بوده، و هیچ اثری از رفتار تصادفی در آن دیده‌نمی‌شود.[۸] به بیانی دیگر، ماهیت قطعی این سامانه‌ها، باعث پیش‌بینی‌پذیری‌شان نمی‌شود.[۹][۱۰] به این رفتار، آشوب قطعی یا تنها، آشوب می‌گویند. این نظریه را ادوارد لورنتس این‌گونه خلاصه کرد:[۱۱]

الگو:گفتاورد

رفتار آشوب‌ناک در بسیاری از سامانه‌های طبیعی دیده‌می‌شود؛ جریان سیالات، بی‌نظمی‌های تپش قلب، آب‌وهوا و اقلیم.[۱۲][۱۳][۷] همچنین این پدیده، در برخی سامانه‌ها با مؤلفه‌های مصنوعی، همچون بازار سهام و ترافیک جاده‌ها نیز خودبه‌خود رخ می‌دهد.[۱۴][۳] این رفتار را می‌توان از راه تحلیل مدل ریاضیاتی، با کمک فنون تحلیلی چون نمودارهای بازگشتی و نگاشت‌های پوانکاره، مطالعه کرد. نظریه آشوب در رشته‌های گوناگونی مانند هواشناسی،[۷] انسان‌شناسی،[۱۵] جامعه‌شناسی،[۱۶] علوم محیطی، علوم رایانه، مهندسی، اقتصاد، بوم‌شناسی، مدیریت بحران همه‌گیری جهانی،[۱۷][۱۸] و فلسفه کاربرد دارد. این نظریه، پایه رشته‌های علمی چون سامانه‌های پویای پیچیده، نظریه مرز آشوب و فرایندهای خودسامانی است.

تاریخچه

معرفی و گسترش نظریه آشوب، مدیون کارهای پوانکاره، ادوارد لورنتس، بِنُوآ ماندِل‌بُرو و میچل فایگن‌باوم است. پوانکاره نخستین کسی بود که ثابت کرد مسئله سه جسم (برای نمونه، خورشید، زمین، ماه) مسئله‌ای آشوب‌ناک و غیرقابل حل است. شاخهٔ دیگر نظریه آشوب که در مکانیک کوانتومی پیش می‌آید، آشوب کوانتومی نام دارد. گفته می‌شود که لاپلاس و خیام، پیش‌از پوانکاره، به آشوب پی برده‌بودند.

نخستین بار، یک هواشناس به‌نام ادوارد لورنتس به مسئله آشوب‌ناکی برخورد. ۱۹۶۰، او روی پیش‌بینی آب‌وهوا کار می‌کرد و روی کامپیوترش ۱۲ معادله برای آن در نظر گرفته‌بود. این معادله‌ها، آب‌وهوا را پیش‌بینی نمی‌کرد، ولی، نظری، پیش‌بینی می‌کرد که هوا چگونه می‌تواند باشد. او می‌خواست دوباره به دنبالهٔ مشخصی برسد. برای صرفه‌جویی در وقت، او به‌جای آغاز از اول دنباله، از وسط آن شروع کرد. عددی را که از بار پیش، از دنباله در دست داشت، وارد سیستم کرد، و کامپیوتر را به حال خود گذاشت تا پردازش کند. یک ساعت بعد که برگشت، دنباله، متفاوت از بار پیش، ادامه یافته‌بود. برخلاف بار پیش، دنباله جدید واگرا می‌شد و نسبت به دنباله اول، کاملاً به‌هم‌ریخته می‌نمود. لورنتس، سرانجام دریافت که مشکل کار کجاست. کامپیوتر، تا ۶ رقم اعشار را ذخیره می‌کرد و او برای این‌که کاغذ کمتری مصرف کند، فقط ۳ رقم اعشار را برای خروجی در نظر گرفته‌بود. در الگوی اولیه، عدد به‌دست‌آمده در اصل، ۵۰۶۱۲۷/۰ بود، ولی او برای بار بعد، فقط ۵۰۶/۰ را وارد کرده‌بود. براساس دانش آن زمان، این دنباله می‌بایست شبیه یا بسیار نزدیک به دنباله اولیه می‌شد. او انتظار داشت، رقم‌های پنجم و ششم مهم نباشند و اثر چندانی روی خروجی نگذارند. اما چنین نبود. لورنز اما آن را نپذیرفت.

این پدیده، به‌عنوان اثر پروانه‌ای شناخته شد. در واقع، تفاوت دو مقدار اولیه آن‌قدر ناچیز است، که انتظار می‌رود به اندازه اثر بال زدن یک پروانه روی وضعیت جوی باشد. مانند این‌که در یک دوره آب‌وهوایی، گردبادی که قرار بود سواحل اندونزی را درنوردد، هیچ‌گاه اتفاق نمی‌افتد. این پدیده، حساسیت زیاد به شرایط اولیه را نشان می‌دهد.

پژوهش‌های متخصصان در مطالعات هواشناسی ادامه یافت تااین‌که ۱۹۹۱، جیمز یورک، نظریه آشوب را به مفهوم «نظم در بی‌نظمی» پیش نهاد. او استاد ریاضی و فیزیک در دانشگاه مریلند و به پدر آشوب مشهور است.

دینامیک آشوبناک

نگاشت تعریف شده با x4x(1x) و y(x+y)(mod1)، حساسیت نسبت به موقعیت آغازین x را نمایش می‌دهد. در اینجا، دو سری از مقادیر x و y که در ابتدا اختلاف اندکی دارند، با گذر زمان، اختلافشان، قابل توجه، بیشتر می‌شود (واگرا شدن).

«آشوب» به‌معنای «نوعی بی‌نظمی» است.[۱۹][۲۰] البته در نظریه آشوب، این اصطلاح تعریف دقیق‌تری دارد. گرچه آشوب، تعریف ریاضی همگانی ندارد، تعریف رایج را رابرت دِوانی پیش نهاد، که چنین است: یک سامانه دینامیکی، آشوب‌ناک است اگر یکی از سه ویژگی را دارا باشد:[۲۱]

  1. نسبت به شرایط اولیه حساس باشد.
  2. از نظر توپولوژیک، متعدی باشد.الگو:Efn
  3. مدارهای چگال متناوب داشته‌باشد.

نشان داده‌شده که در برخی موارد، در واقع دو ویژگی ۲ و ۳ هستند که موجب حساسیت به شرایط اولیه می‌شوند.[۲۲][۲۳] در مسائل زمان‌گسسته، این برای تمام نگاشت‌های پیوسته روی فضاهای متریک صدق می‌کند.[۲۴] در چنین مواردی، با این که خاصیت «حساسیت نسبت شرایط اولیه» اغلب در عمل مهم است، ولی لازم نیست در تعریف آشوب‌ناکی قید شود.

اگر تنها بازه‌ها در نظر گرفته‌شوند، خاصیت دوم، دو خاصیت دیگر را نتیجه می‌دهد.[۲۵] تعریف کلی‌تر اما ضعیف‌تری از آشوب، تنها دو خاصیت اول را دربرمی‌گیرد.[۲۶] الگو:-

جستارهای وابسته

یادداشت‌ها

الگو:یادداشت‌ها

منابع

الگو:پانویس

برای مطالعه بیشتر

مقالات

الگو:چپ‌چین الگو:آغاز پانویس

الگو:پایان پانویس الگو:پایان چپ‌چین

کتب درسی

الگو:چپ‌چین الگو:آغاز پانویس

الگو:پایان پانویس الگو:پایان چپ‌چین

آثار نیمه-فنی و عرفی

الگو:چپ‌چین الگو:آغاز پانویس

  • Christophe Letellier, Chaos in Nature, World Scientific Publishing Company, 2012, الگو:ISBN.
  • الگو:Cite book
  • الگو:Cite book
  • الگو:Cite book
  • John Briggs and David Peat, Turbulent Mirror:: An Illustrated Guide to Chaos Theory and the Science of Wholeness, Harper Perennial 1990, 224 pp.
  • John Briggs and David Peat, Seven Life Lessons of Chaos: Spiritual Wisdom from the Science of Change, Harper Perennial 2000, 224 pp.
  • الگو:Cite journal
  • Predrag Cvitanović, Universality in Chaos, Adam Hilger 1989, 648 pp.
  • Leon Glass and Michael C. Mackey, From Clocks to Chaos: The Rhythms of Life, Princeton University Press 1988, 272 pp.
  • James Gleick, Chaos: Making a New Science, New York: Penguin, 1988. 368 pp.
  • الگو:Cite book
  • L Douglas Kiel, Euel W Elliott (ed.), Chaos Theory in the Social Sciences: Foundations and Applications, University of Michigan Press, 1997, 360 pp.
  • Arvind Kumar, Chaos, Fractals and Self-Organisation; New Perspectives on Complexity in Nature , National Book Trust, 2003.
  • Hans Lauwerier, Fractals, Princeton University Press, 1991.
  • Edward Lorenz, The Essence of Chaos, University of Washington Press, 1996.
  • الگو:Cite book
  • David Peak and Michael Frame, Chaos Under Control: The Art and Science of Complexity, Freeman, 1994.
  • Heinz-Otto Peitgen and Dietmar Saupe (Eds.), The Science of Fractal Images, Springer 1988, 312 pp.
  • Clifford A. Pickover, Computers, Pattern, Chaos, and Beauty: Graphics from an Unseen World , St Martins Pr 1991.
  • Clifford A. Pickover, Chaos in Wonderland: Visual Adventures in a Fractal World, St Martins Pr 1994.
  • Ilya Prigogine and Isabelle Stengers, Order Out of Chaos, Bantam 1984.
  • الگو:Cite book
  • David Ruelle, Chance and Chaos, Princeton University Press 1993.
  • Ivars Peterson, Newton's Clock: Chaos in the Solar System, Freeman, 1993.
  • الگو:Cite book
  • الگو:Cite book
  • Manfred Schroeder, Fractals, Chaos, and Power Laws, Freeman, 1991.
  • الگو:Cite book
  • Ian Stewart, Does God Play Dice?: The Mathematics of Chaos , Blackwell Publishers, 1990.
  • Steven Strogatz, Sync: The emerging science of spontaneous order, Hyperion, 2003.
  • Yoshisuke Ueda, The Road To Chaos, Aerial Pr, 1993.
  • M. Mitchell Waldrop, Complexity: The Emerging Science at the Edge of Order and Chaos, Simon & Schuster, 1992.
  • Antonio Sawaya, Financial Time Series Analysis: Chaos and Neurodynamics Approach, Lambert, 2012.

الگو:پایان پانویس الگو:پایان چپ‌چین

پیوند به بیرون

الگو:چپ‌چین الگو:Div col

الگو:Div col end الگو:پایان چپ‌چین الگو:علوم سامانه‌ها الگو:نظریه آشوب الگو:الگوها در طبیعت الگو:ریاضیات صنعتی و کاربردی