برنامه‌ریزی پارامتری

از testwiki
نسخهٔ تاریخ ۳۰ دسامبر ۲۰۲۱، ساعت ۱۱:۵۲ توسط imported>Romeo.kh (growthexperiments-addlink-summary-summary:3|0|0)
(تفاوت) → نسخهٔ قدیمی‌تر | نمایش نسخهٔ فعلی (تفاوت) | نسخهٔ جدیدتر ← (تفاوت)
پرش به ناوبری پرش به جستجو

برنامه‌ریزی پَرمایشی یا بهینه‌سازی زمان‌وردا از مسایل بهینه‌سازی ریاضی می‌باشد که مسئله به یاری تابعی از یک یا چند پارامون واکاوی می‌شود.[۱] گوالش و گسترش این شاخه از ریاضی به یاری واکاوی حساسیت (sensitivity analysis) و پیداشت هوموتپی (Homotopy Continuation) از یک مسئله بهینه‌سازی انجام گرفته است.

مسئله

مسئله بهینه‌سازی زیر را درنگرید.

J*(θ)=minxnf(x,θ)subject to g(x,θ)0.θΘm

که در آن x متغیر بِهینش، θ پارامون‌ها، f(x,θ) تابع هزینه (objective) و g(x,θ) تابع پاوَند (constraint) می‌باشند. در نگر داشته باشید که این مسئله خود، یک بهینه‌سازی پاوَسته می‌باشد. همچنین J*(θ) مقدار بهینه مسئله برحسب تابعی از θ را برگردانده و Θ فضای پارامون را نشان می‌دهد.

روش حل

برای حل این مسئله، گمان می‌شود که پاسخ بهینه برای مقداری از θ در دسترس است. سپس شرایط KKT (شرایط کاروش–کون–تاکر) برای این مسئله برجسب پارامون θ نوشته می‌شود. با روش پیداشت هوموتپی (Homotopy Continuation)، شرایط KKT را می‌توان به روشی گام‌به‌گام و به یاری دستگاهی از معادله دیفرانسیل حل کرد. از حل این معادلات، فرجام، به پاسخ بهینه دست می‌یابیم.

الگوریتم حل

به هر روی معادلات دیفرانسیل وابسته به این گونه بهینه‌سازی، معمولاً پیچیده‌است که به روشی کاربردی نیاز می‌شود. روش پیش‌بینی-ویرایش یک روش کاربردی برای حل گام‌به‌گام این گونه از بهینه‌سازی است.

کاربرد

بهینه‌سازی پرمایشی در حل مسایل بهینه‌سازی دشوار و یا نامحدبی که پاسخ بهینه آن در شرایط ویژه‌ای از تابع هزینه در دسترس است، کاربرد دارد. گمان کنید، پاسخ مسئله بالا برای مقدار ویژه‌ای از θ در دسترس باشد، آنگاه به یاری واکاوی حساسیت شرایط KKT (شرایط کاروش–کون–تاکر) می‌توان برای مقادیر دلخواه از θ پاسخ بهینه (و یا زیربهینه) را بدست آورد.

از کاربردهای دیگر آن در نگره کنترل بهینه می‌باشد. با بررسی پیوند میان کنترل پیش‌بینانه مدل و این نوع بهینه‌سازی، گرایش به این شاخه از ریاضیات فزونی‌یافته است.[۲]

جستارهای وابسته

منابع

الگو:پانویس