برون‌مرکزی (هندسه)

از testwiki
نسخهٔ تاریخ ۷ سپتامبر ۲۰۲۴، ساعت ۱۷:۵۳ توسط imported>Theahamiri (growthexperiments-addlink-summary-summary:2|0|0)
(تفاوت) → نسخهٔ قدیمی‌تر | نمایش نسخهٔ فعلی (تفاوت) | نسخهٔ جدیدتر ← (تفاوت)
پرش به ناوبری پرش به جستجو
مقاطع مخروطی، به ترتیب افزایش برون‌مرکزی‌شان مرتب شده‌اند. توجه شود که انحنا با برون‌مرکزی رابطه عکس دارد. دایره کمترین برون مرکزی و بیشترین انحنا و خط راست بیشترین برون مرکزی و کمترین انحنا را داراست.

در علم ریاضیات و هندسه، برون‌مرکزی یا خروج از مرکز برابر با نسبت نیم فاصله کانونی به نیم قطر بزرگ در مقاطع مخروطی مانند دایره و بیضی است. برون‌مرکزی، انحراف یک مقطع مخروطی را از دایره بودن می‌سنجد. خروج از مرکز را با e نشان می‌دهند.

به طور خاص:

  • برون‌مرکزی بیضی بین ۰ تا ۱ است. در صورت ۰ بودن، مقطع دایره است.
  • برون‌مرکزی سهمی ۱ است.
  • برون‌مرکزی هذلولی بیشتر از ۱ است.

در صورتی که خروج از مرکز دو مقطع مخروطی یکسان باشد آن دو مقطع یکسانند (و برعکس).

تعریف

هریک از مقاطع مخروطی می‌توانند بدین‌گونه تعریف شوند: مکان هندسی نقاطی که فاصلهٔ آنها از یک نقطه (کانون) و یک خط (هادی) دارای نسبتی ثابت باشند. این نسبت، خروج از مرکز است و با e نمایش می‌یابد.

اگر یک صفحه، مخروطی را در زوایای مختلف قطع کند، برون‌مرکزی برابراست با:

e=sinαsinβ

که در آن آلفا زاویه صفحه با افق و بتا زاویه بین مخروط و افق است.

در حالت دیگر، خروج از مرکز برابر است با c تقسیم بر a که c نصف فاصلهٔ بین دو کانون است و a اندازهٔ قطر بزرگ.

اندازه‌های مرجع

مقطع مخروطی معادله خروج از مرکز (e) خروج از مرکز خطی (c)
دایره x2+y2=r2 ۰ ۰
بیضی x2a2+y2b2=1 1b2a2 a2b2
سهمی y2=4ax ۱ a
هذلولی x2a2y2b2=1 1+b2a2 a2+b2

a برابر با نصف قطر بزرگ و b برابر با نصف قطر کوچک است.

جستارهای وابسته

منابع

  • مشارکت‌کنندگان ویکی‌پدیا، «Eccentricity» ویکی‌پدیا دانشنامهٔ آزاد. (دسترسی در ۹ آوریل ۲۰۱۱

برای مطالعه بیشتر

الگو:هندسه-خرد